Menu

BEAUTIFUL MIND COFFEE

www.beautifulmindcoffee.ca

GREEN TEA

 

GREEN TEA

Green tea plays a vital role in the offerings of Beautiful Mind Coffee, leveraging its remarkable qualities and numerous health benefits. Green tea, made from the leaves of the Camellia sinensis plant, is renowned for its vibrant green color, distinctive flavor, and delightful aroma. With its rich antioxidant content, green tea offers various advantages to both the mind and body. This potent beverage contains catechins, powerful compounds that possess anti-inflammatory and cancer-fighting properties. Additionally, green tea is known to boost metabolism, aid in weight management, and promote cardiovascular health. Its natural caffeine content provides a gentle energy boost without the jittery side effects, and the presence of L-theanine, an amino acid, helps induce relaxation and improve focus. Therefore, its careful inclusion in Beautiful Mind Coffee amplifies the product's core mission of offering a beverage that not only tastes great but also supports overall well-being.


REFERENCES:

 

J Neurosci. 2005 Sep 21;25(38):8807-14.

Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice.

Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J.

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder pathologically characterized by deposition of beta-amyloid (Abeta) peptides as senile plaques in the brain. Recent studies suggest that green tea flavonoids may be used for the prevention and treatment of a variety of neurodegenerative diseases. Here, we report that (-)-epigallocatechin-3-gallate (EGCG), the main polyphenolic constituent of green tea, reduces Abeta generation in both murine neuron-like cells (N2a) transfected with the human “Swedish” mutant amyloid precursor protein (APP) and in primary neurons derived from Swedish mutant APP-overexpressing mice (Tg APPsw line 2576). In concert with these observations, we find that EGCG markedly promotes cleavage of the alpha-C-terminal fragment of APP and elevates the N-terminal APP cleavage product, soluble APP-alpha. These cleavage events are associated with elevated alpha-secretase activity and enhanced hydrolysis of tumor necrosis factor alpha-converting enzyme, a primary candidate alpha-secretase. As a validation of these findings in vivo, we treated Tg APPsw transgenic mice overproducing Abeta with EGCG and found decreased Abeta levels and plaques associated with promotion of the nonamyloidogenic alpha-secretase proteolytic pathway. These data raise the possibility that EGCG dietary supplementation may provide effective prophylaxis for AD.


Am J Clin Nutr. 2006 Feb;83(2):355-61.

Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1.

Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, Awata S, Nagatomi R, Arai H, Tsuji I.

Abstract

BACKGROUND: Although considerable experimental and animal evidence shows that green tea may possess potent activities of neuroprotection, neurorescue, and amyloid precursor protein processing that may lead to cognitive enhancement, no human data are available.

OBJECTIVE: The objective was to examine the association between green tea consumption and cognitive function in humans.

DESIGN: We analyzed cross-sectional data from a community-based Comprehensive Geriatric Assessment (CGA) conducted in 2002. The subjects were 1003 Japanese subjects aged > or =70 y. They completed a self-administered questionnaire that included questions about the frequency of green tea consumption. We evaluated cognitive function by using the Mini-Mental State Examination with cutoffs of <28, <26, and <24 and calculated multivariate-adjusted odds ratios (ORs) of cognitive impairment.

RESULTS: Higher consumption of green tea was associated with a lower prevalence of cognitive impairment. At the <26 cutoff, after adjustment for potential confounders, the ORs for the cognitive impairment associated with different frequencies of green tea consumption were 1.00 (reference) for < or =3 cups/wk, 0.62 (95% CI: 0.33, 1.19) for 4-6 cups/wk or 1 cup/d, and 0.46 (95% CI: 0.30, 0.72) for > or =2 cups/d (P for trend = 0.0006). Corresponding ORs were 1.00 (reference), 0.60 (95% CI: 0.35, 1.02), and 0.87 (95% CI: 0.55, 1.38) (P for trend = 0.33) for black or oolong tea and 1.00 (reference), 1.16 (95% CI: 0.78, 1.73), and 1.03 (95% CI: 0.59, 1.80) (P for trend = 0.70) for coffee. The results were essentially the same at cutoffs of <28 and <24.

CONCLUSION: A higher consumption of green tea is associated with a lower prevalence of cognitive impairment in humans.


J Nutr. 2009 Oct;139(10):1987-93. doi: 10.3945/jn.109.109785. Epub 2009 Aug 5.

Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice.

Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB, Oh KW, Hong JT.

Abstract

Alzheimer’s disease (AD) is characterized by the extracellular deposition of beta-amyloid peptide (Abeta) in cerebral plaques. Abeta is derived from the beta-amyloid precursor protein (APP) by the enzymes alpha-, beta- and gamma-secretase. Compounds that enhance alpha-secretase, but inhibit beta- or gamma-secretase activity, have therapeutic potential in the treatment of AD. Green tea, or its major polyphenolic compound, has been shown to have neuroprotective effects. In this study, we investigated the possible effects of (-)-epigallocatechin-3-gallate (EGCG) on memory dysfunction caused by Abeta through the change of Abeta-induced secretase activities. Mice were pretreated with EGCG (1.5 or 3 mg/kg body weight in drinking water) for 3 wk before intracerebroventricular administration of 0.5 microg Abeta(1-42). EGCG dose-dependently reduced the Abeta(1-42)-induced memory dysfunction, which was evaluated using passive avoidance and water maze tests. Abeta(1-42) induced a decrease in brain alpha-secretase and increases in both brain beta- and gamma-secretase activities, which were reduced by EGCG. In the cortex and the hippocampus, expression of the metabolic products of the beta- and gamma-secretases from APP, C99, and Abeta also were dose-dependently suppressed by EGCG. Paralleled with the suppression of beta- and gamma-secretases by EGCG, we found that EGCG inhibited the activation of extracellular signal-regulated kinase and nuclear transcription factor-kappaB in the Abeta(1-42)-injected mouse brains. In addition, EGCG inhibited Abeta(1-42)-induced apoptotic neuronal cell death in the brain. To further test the ability of EGCG to affect memory, EGCG (3 mg/kg body weight) was administered in drinking water for 1 wk to genetically developed preseniline 2 (PS2) mutant AD mice. Compared with untreated mutant PS2 AD mice, treatment with EGCG enhanced memory function and brain alpha-secretase activity but reduced brain beta- and gamma-secretase activities as well as Abeta levels. Moreover, EGCG inhibited the fibrillization of Abeta in vitro with a half maximal inhibitory concentration of 7.5 mg/L. These studies suggest that EGCG may be a beneficial agent in the prevention of development or progression of AD.


J Nutr Biochem. 2004 Sep;15(9):506-16.

Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases.

Weinreb O, Mandel S, Amit T, Youdim MB.

Abstract

Tea consumption is varying its status from a mere ancient beverage and a lifestyle habit, to a nutrient endowed with possible prospective neurobiological-pharmacological actions beneficial to human health. Accumulating evidence suggest that oxidative stress resulting in reactive oxygen species generation and inflammation play a pivotal role in neurodegenerative diseases, supporting the implementation of radical scavengers, transition metal (e.g., iron and copper) chelators, and nonvitamin natural antioxidant polyphenols in the clinic. These observations are in line with the current view that polyphenolic dietary supplementation may have an impact on cognitive deficits in individuals of advanced age. As a consequence, green tea polyphenols are now being considered as therapeutic agents in well controlled epidemiological studies, aimed to alter brain aging processes and to serve as possible neuroprotective agents in progressive neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases. In particular, literature on the putative novel neuroprotective mechanism of the major green tea polyphenol, (-)-epigallocatechin-3-gallate, are examined and discussed in this review.